
Reinforcement Learning at NYU Shanghai 2022

UNDERSTANDING OFF-POLICY CONTROL

Xinhao Liu

New York University Shanghai

1 INTRODUCTION

In this report, we analyze and understand state-of-the-art deep reinforcement learning algorithms in
off-policy control by experiments. In Sec. 2, most of the analysis and discussion is based on the
SAC Haarnoja et al. (2018). We discuss how different hyperparameters affect the performance of
the algorithm. In Sec. 3, we propose a variant of SAC with the inspiration from RED-Q Chen et al.
(2021). We also render the agent and compare the training results at different epochs. The code of
this project can be found at: https://github.com/Gaaaavin/REDQ-fall22-student

2 HYPERPARAMETERS

2.1 LEARNING RATE

0 50000 100000 150000 200000 250000 300000
Number of Data

0

2000

4000

6000

8000

Pe
rfo

rm
an

ce

SAC lr1e-4
SAC lr3e-4
SAC lr1e-3

(a) Performance, Half Cheetah

0 50000 100000 150000 200000 250000 300000
Number of Data

0

100

200

300

400

500

Av
g 

Q1
 V

al
ue

SAC lr1e-4
SAC lr3e-4
SAC lr1e-3

(b) Q value, Half Cheetah

0 50000 100000 150000 200000 250000 300000
Number of Data

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
g 

No
rm

al
ize

d 
Q 

Bi
as

SAC lr1e-4
SAC lr3e-4
SAC lr1e-3

(c) Q bias, Half Cheetah

0 50000 100000 150000 200000 250000 300000
Number of Data

0

500

1000

1500

2000

2500

3000

3500

Pe
rfo

rm
an

ce

SAC lr1e-4
SAC lr3e-4
SAC lr1e-3

(d) Performance, Hopper

0 50000 100000 150000 200000 250000 300000
Number of Data

0

50

100

150

200

250

Av
g 

Q1
 V

al
ue

SAC lr1e-4
SAC lr3e-4
SAC lr1e-3

(e) Q value, Hopper

0 50000 100000 150000 200000 250000 300000
Number of Data

0.5

0.0

0.5

1.0

Av
g 

No
rm

al
ize

d 
Q 

Bi
as

SAC lr1e-4
SAC lr3e-4
SAC lr1e-3

(f) Q bias, Hopper

Figure 1: Various learning rate. The figures report performance, Q value, and Q bias of SAC when
trained with different learning rates. Experiments are run in two environments.

We discuss the influence of different learning rate on the SAC Haarnoja et al. (2018) algorithm.
The default learning rate is α = 3 × 10−4. In the experiment, we also use α = 1 × 10−3 and
α = 1 × 10−4 for comparison. In general, as shown in Fig. 1, the learning rate α = 1 × 10−3 has
the best performance, whereas α = 1 × 10−4 does not perform very well. One possible reason is
that SAC has a low update-to-data (UTD) ratio (G = 1). Hence, when training with a low learning
rate, the performance converges very slowly. Another explanation that the result is due to the nature
of stochastic gradient descent, where the training tend to stuck at a local minimum when using a
small learning rate. This is most likely for the Hopper environment because the performance does
not increase with the growing number of data when α = 1× 10−4.

1

https://github.com/Gaaaavin/REDQ-fall22-student


Reinforcement Learning at NYU Shanghai 2022

Comparing the performance and Q value curve, we can �nd a clear correlation that a higher Q value
results a better performance. It is interesting to observe that in the Half Cheetah environment, the
SAC algorithm has an overestimation for the Q values with all the learning rates, as shown in Fig. 1b.
Still, the highest learning rate (� = 1 � 10� 3) has the minimal overestimation and corrects it very
quickly in the training progress.

The two environment varies a lot in terms of the averaged normalized Q bias. In Half Cheetah,
� = 1 � 10� 3 is the fastest to reach a very low bias. This also agrees with the Q value and the
performance, though all learning rates have a slight underestimation when converged. On the other
hand, there is no signi�cant difference in the Q bias among the three learning rates in the Hopper
environment. It is worth noting, however, that all learning rates have an underestimation of the Q
values at the beginning of the training. This might indicate that Hopper is a simpler environment
then Half Cheetah, which is proved to be true after checking the documentation of the Gym library.

2.2 DISCOUNT RATE

(a) Performance, Half Cheetah (b) Q value, Half Cheetah (c) Q bias, Half Cheetah

(d) Performance, Hopper (e) Q value, Hopper (f) Q bias, Hopper

Figure 2: Various discount rates. The �gures report performance, Q value, and Q bias of SAC
when trained with different discount rates. Experiments are run in two environments.

In this section, we discuss with different discount rates when using the same learning rate. The
default discount rate is
 = 0 :99. We compare it with
 = 0 :98 and
 = 0 :999, and the result is
shown in Fig. 2. We found that the results are different in the two environments. In Half Cheetah,

 = 0 :999has the best performance, and
 = 0 :99 has the worst performance. On the other hand,
in Hopper,
 = 0 :99 has the best performance and
 = 0 :98 has the worst performance. Moreover,
both
 = 0 :98and
 = 0 :999saturate at the very beginning of the training. This could be explained
by the complexity of the two environments. Since Hopper is simpler, the agent maybe can run
beyond 1000 time steps before falling. Thus, paying more attention to later time steps does not
lead to an improvement in the performance. In the opposite, it might hurt the training at the current
learning rate. Nevertheless, in the more complex environment Half Cheetah, the agent may often
falls before 1000 time steps. A larger discount rate may guide the algorithm to learn a policy that
can run for longer time steps before falling, which signi�cantly improves the performance (episodic
return).

It is meaningless to discuss the Q value because different discount rate changes the de�nition of Q
value. Thus, it is expected that the Q value with different discount rate is not comparable as shown
in the �gure.

2



Reinforcement Learning at NYU Shanghai 2022

The value of Q bias in the experiments agrees our hypothesis about the environment. In Half Chee-
tah, as shown in Fig. 2c, a larger discount rate (
 = 0 :999) induces a signi�cant underestimation of
the Q value at the beginning, because the agent cannot run before falling for 1000 time steps. As
the number of data increases, the algorithm learns a better policy so that the negative bias increases
towards zero. In the opposite, in Hopper, as shown in Fig. 2f, a large discount rate lead to an in-
creasing overestimation as the number of data grows. This is also the reason behind the saturation
in the performance curve in Fig. 2c.

2.3 POLYAK

(a) Performance, Half Cheetah (b) Q value, Half Cheetah (c) Q bias, Half Cheetah

(d) Performance, Hopper (e) Q value, Hopper (f) Q bias, Hopper

Figure 3: Various polyak values. The �gures report performance, Q value, and Q bias of SAC
when trained with different polyak values. Experiments are run in two environments.

Using a target network to slow the update when computing the loss in order to stabilize the training is
useful trick that is used in Lillicrap et al. (2015); Fujimoto et al. (2018); Haarnoja et al. (2018); Chen
et al. (2021). In our code implementation, a high polyak value means a slower update of the target
network. In the extreme cases, polyak valuep = 0 means a synchronization of the target network
and the source network, whereasp = 1 means never updating the target network. In the following
discussion, we ignorep = 0 because this is theoretically incorrect and has the worst performance.

As shown in Fig. 3, in Half Cheetah, all the polyak value has a relatively similar �nal performance
exceptp = 0 . In Hopper,p = 0 :995leads to the best performance, and lower polyak value (0.9 and
0) does not perform very well.

In terms of the average Q value,p = 0 :9 leads to the highest Q value in Half Cheetah andp = 0 :995
leads to a highest converged Q value. Observing the Q value and Q bias curve, we can �nd the lack
of a target network (p = 0 ) makes the learning very unstable, especially in the case of Hopper.

2.4 UTD AND RESET

A signi�cant improvement of Chen et al. (2021) over Haarnoja et al. (2018) is the increased UTD
ratio (G � 1). Here, we compareG = 1 andG = 5 to get an idea of the effect of UTD radio. As
shown in Fig. 4,G = 5 has a faster learning ef�ciency and a higher performance thanG = 1 . We
combine this observation with the discussion in Chen et al. (2021) to see that SAC has a potential to
learning with a UTD ration slightly higher than 1, while is not guaranteed to have good performance
whenG � 1. The faster learning ef�cient whenG = 5 can also be proved from the Q value and
Q bias curve. Although a higher UTD ratio leads to a larger overestimation at the beginning of the
training, the bias can be corrected faster than with a lower UTD ratio.

3



Reinforcement Learning at NYU Shanghai 2022

0 50000 100000 150000 200000 250000 300000
Number of Data

0

2000

4000

6000

8000

P
er

fo
rm

an
ce

SAC UTD 1

SAC UTD 5

SAC UTD 1 + reset

SAC UTD 5 + reset

(a) Performance, Half Cheetah

0 50000 100000 150000 200000 250000 300000
Number of Data

0

100

200

300

400

500

A
vg

 Q
1 

V
al

ue

SAC UTD 1

SAC UTD 5

SAC UTD 1 + reset

SAC UTD 5 + reset

(b) Q value, Half Cheetah

0 50000 100000 150000 200000 250000 300000
Number of Data

0

2

4

6

8

10

A
vg

 N
or

m
al

iz
ed

 Q
 B

ia
s

SAC UTD 1

SAC UTD 5

SAC UTD 1 + reset

SAC UTD 5 + reset

(c) Q bias, Half Cheetah

0 50000 100000 150000 200000 250000 300000
Number of Data

0

500

1000

1500

2000

2500

3000

3500

P
er

fo
rm

an
ce

SAC UTD 1

SAC UTD 5

SAC UTD 1 + reset

SAC UTD 5 + reset

(d) Performance, Hopper

0 50000 100000 150000 200000 250000 300000
Number of Data

0

50

100

150

200

250

A
vg

 Q
1 

V
al

ue

SAC UTD 1

SAC UTD 5

SAC UTD 1 + reset

SAC UTD 5 + reset

(e) Q value, Hopper

0 50000 100000 150000 200000 250000 300000
Number of Data

1

0

1

2

3

4

A
vg

 N
or

m
al

iz
ed

 Q
 B

ia
s

SAC UTD 1

SAC UTD 5

SAC UTD 1 + reset

SAC UTD 5 + reset

(f) Q bias, Hopper

Figure 4: Various UTD and reset. The figures report performance, Q value, and Q bias of SAC
when trained with different UTD ratios and reset conditions. Experiments are run in two environ-
ments.

We also try to reset the networks at the middle of the training, as suggested by Nikishin et al. (2022).
It turns out that it takes about the same number of data to regain the performance before the resetting.
In Half Cheetah, the performance is slightly lower at the end of training compared to non-resetting.
It might need more data for the resetting ones to outperform the original ones. In Hopper, however,
we observe a significant loss of performance for resetting when G = 1. This can be explained by the
low learning efficiency. Hence, it take much more number of data to regain the same performance
as before the resetting.

One significant observation from Fig. 4c and 4f is that the overestimation after the resetting is larger
than that at the beginning. This can be explained by the high return data in the reply buffer at the
middle of the training. Because the return in the data tend to be higher than those in the beginning
of the training, the overestimation can be large and cost more data to correct. It implies that it might
not be a good idea to incorporate resetting into high UTD ratio training. Nevertheless, as shown in
Fig. 4d, a low UTD ratio also leads to the slow regaining of the performance. This contradiction is a
good topic for further analysis and discussion with more experiments. Maybe we could try resetting
for RED-Q and compare the performance with the results here.

3 IMPROVEMENTS AND COMPARISONS

In this section, all the discussion is based on SAC Haarnoja et al. (2018) and a proposed variant of it.
The details of the two algorithms are listed in Tab. 1. Also, to discover the potential of the proposed
algorithm with more data, we train it 500 more epochs, compared to 300 epochs for SAC.

Table 1: Hyperparameters. The two algorithms discussed in this section has different hyperparam-
eters as listed in the table. The proposed method will be referred to as RED-Q in the following texts.

Algorithm Learning rate Batch size Hidden size Q functions UTD ratio

SAC 3× 10−4 128 128 2 1
Proposed (RED-Q) 1× 10−3 256 256 4 5

4



Reinforcement Learning at NYU Shanghai 2022

0 100000 200000 300000 400000 500000
Number of Data

0

2000

4000

6000

8000

10000

12000

Pe
rfo

rm
an

ce

SAC
RED-Q

(a) Performance, Half Cheetah

0 100000 200000 300000 400000 500000
Number of Data

0

100

200

300

400

500

600

700

800

Av
g 

Q1
 V

al
ue

SAC
RED-Q

(b) Q value, Half Cheetah

0 100000 200000 300000 400000 500000
Number of Data

0.0

0.5

1.0

1.5

2.0

2.5

Av
g 

No
rm

al
ize

d 
Q 

Bi
as

SAC
RED-Q

(c) Q bias, Half Cheetah

0 100000 200000 300000 400000 500000
Number of Data

0

500

1000

1500

2000

2500

3000

3500

Pe
rfo

rm
an

ce

SAC
RED-Q

(d) Performance, Hopper

0 100000 200000 300000 400000 500000
Number of Data

0

50

100

150

200

250

300

350

Av
g 

Q1
 V

al
ue

SAC
RED-Q

(e) Q value, Hopper

0 100000 200000 300000 400000 500000
Number of Data

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g 

No
rm

al
ize

d 
Q 

Bi
as

SAC
RED-Q

(f) Q bias, Hopper

Figure 5: Experiment performance. The figures report performance, Q value, and Q bias of SAC
and the proposed method (RED-Q). Experiments are run in two environments.

0 100000 200000 300000 400000 500000
Number of Data

0

10000

20000

30000

40000

Ti
m

e

SAC
RED-Q

(a) Time, Half Cheetah

0 100000 200000 300000 400000 500000
Number of Data

0

10000

20000

30000

40000

50000

60000

Ti
m

e

SAC
RED-Q

(b) Time, Hopper

Figure 6: Training time. The figures report training time of SAC and the proposed method (RED-
Q). Experiments are run in two environments.

3.1 PERFORMANCE

As shown in Fig. 5, the proposed method significantly outperforms SAC in all regards. In terms of
performance, the proposed method can achieve a much higher average return when trained with the
same number of data. This is mainly due to the high UTD ratio used in the training, as discussed
in Sec. 2.4. Moreover, the proposed method has more Q functions than SAC, which avoids an
overestimation at the beginning of the training. This can be witnessed both from the Q value curve
and Q bias curve.

3.2 EFFICIENCY

Fig. 5 also shows that increasing the number of data could also improve the performance, although
marginally. It can also be seen from 5d that the improvement is negligible for RED-Q because it
converges very efficiently with only about 100,000 number of data. We can infer that the improve-
ments from more data is more beneficial to SAC than to RED-Q. However, it is worth noting that
the sample efficiency of RED-Q is at the cost of computation efficient, as shown in Fig. 6. Because
of larger UTD ratio and more Q-functions, RED-Q takes more computation time to train per data. In
other words, with enough amount of data, SAC might achieve the same performance as the proposed
method, and the computation time it takes for the two methods to achieve the same performance is

5


	Introduction
	Hyperparameters
	Learning Rate
	Discount Rate
	Polyak
	UTD and Reset

	Improvements and Comparisons
	Performance
	Efficiency
	Qualitative Analysis

	Conclusion

