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ABSTRACT

This report presents a comprehensive survey of adaptive stochastic gradient de-
scent algorithms and benchmarks them on different datasets and model archi-
tectures. The use of gradient-based optimization methods to solve optimization
problems is explained. The experiments conducted in this study compare the per-
formance of different adaptive methods in stochastic gradient descent, including a
special case where Adam fails to converge. However, we found that these methods
work very well for generic cases, which are more common in reality. Our find-
ings provide insights into the behavior of different optimization algorithms under
different conditions, identify their limitations, and suggest best practices.

1 INTRODUCTION

Convex optimization is a significant problem in the field of statistics and numerical machine learn-
ing. In the context of parametric machine learning, optimization methods are often used to find
the optimal parameters that best fit the data within a certain model set . Due to the complexity of
modern machine learning models and data, gradient-based optimization methods are the prominent
approach to solving optimization problems (Bottou et al., 2018). It is regarded as one of the fun-
damental problems in machine learning and optimization. It aims to find the optimal solution for a
given optimization problem by minimizing a loss or objective function by iteratively updating the
current parameters xt according to the gradient ∇f(x) produced by the objective function f at x,
scaled by a step size α.

Stochastic gradient descent (SGD), as a special category of gradient-based optimization algorithm,
is the most popular and widely-used genre of convex optimization methods to better fit modern
computation devices and accommodate big data (Ruder, 2016). As shown in equation 1 (Ik), SGD
selects a subset of the given data according to a uniform distribution so it can balance the trade-off
between parallel computing and data efficiency.

xk+1 = xk − α∇fIk (xk) (1)

One of the largest problem in SGD is the choice of the hyperparameter step size α. It is shown
that a large step size can induce the non-convergence of the optimization, while a small step size
might cause the parameters to stuck in local optima (Nar & Sastry, 2018). Hence, the global con-
vergence of SGD algorithms is largely dependent on the choice of α. There is no one-size-fits-all
guideline for the choice a good step size. The choice is usually empirical and data-dependent, which
is troublesome if we want to generalize an algorithm to solve different categories of problems.

In recent years, a series of adaptive methods (Duchi et al., 2011; Hinton et al., 2012; Kingma & Ba,
2014) are proposed aiming to adaptively find a good step size so that the parameters are updated with
an appropriate learning rate and accelerate the convergence of the algorithm. There is also much
debate on the analytical and empirical analysis of the convergence of these algorithms (Défossez
et al., 2022; Reddi et al., 2019; De et al., 2019; Traoré & Pauwels, 2021; Shi et al., 2021). However, it
is still unclear and debatable about the performance, convergence, and efficiency of these algorithms
when they are applied to real problems.

This project conducts a comprehensive survey of the adaptive SGD algorithm and benchmark them
on different datasets and model architectures. The report will provide insights into the behavior of
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Algorithm 1 Generic Adaptive Method Setup (Reddi et al., 2019)

Input: x1 ∈ F , step size {αt > 0}Tt=1, sequence of functions {ϕt, ψt}Tt=1
for t = 1 to T do
gt = ∇ft(xt)
mt = ϕt(g1, . . . , gt) and Vt = ψt(g1, . . . , gt)
xt+1 = xt − αtmt/

√
Vt

end for

different optimization algorithms under different conditions, identify their limitations, and suggest
best practices for their use.

The importance of this benchmark lies in its potential to guide researchers and practitioners in the
selection of the most suitable optimization algorithm for their specific problem. It can also help
researchers in developing new and better optimization algorithms by identifying the limitations of
existing ones.

2 UPDATE RULES

Generic update rule. (Reddi et al., 2019) proposes a generic framework that accounts for the update
rules in different adaptive methods, as shown in algorithm 1. It provides a high-level abstraction of
the idea of adaptive methods and is flexible to encapsulate different many popular adaptive methods.
It is worth nothing that the function ϕt and ψt in the algorithm is an abstraction of the specific update
rule used in different methods. In general, we observe that all adaptive methods first compute the
gradient gt of ft at the current parameter xt. The next step features the main design of adaptive
methods. They use two functions ϕt : Rt×n 7→ Rn and ψt : Rt×n 7→ Rn×n to compute mt and Vt,
which controls the direction and norm of the update respectively. Finally, the current parameter xt is
updated by the learning rate αtmt/

√
Vt. We want to make a remark that we will refer to αt by “step

size” and effective update αt/
√
Vt by “learning rate” hereafter. In the rest of this section, we will

introduce and explain the specific update rules of different adaptive methods and their corresponding
formulas.

Momentum SGD. The most trivial adaptive methods based on SGD is the so-called momentum
method (Qian, 1999). The name “momentum” comes from the fact that the method physically
resembles behavior of a falling object with a momentum. Momentum SGD computes a moving
average between the previous updates and the current gradient. In the context of algorithm 1, for a
hyperparameter β ∈ [0, 1], we have ϕt designed as:

ϕt = βmt−1 + (1− β)gt and Vt = In×n, (Momentum)

and αt = α/
√
t (required for convergence). In practice, we tend to set a very large value for β (0.9 or

0.99). By updating the current parameter by the momentum, momentum method is believed to have
a better ability to escape from local optima and dampen the oscillation around the global optima,
compared to SGD. This is because momentum method employs the previous update to redirect and
rescale the current update. At a local optima, previous updates tend to be large so the parameter will
be updated by a large norm and escape the region. On the other hand, at a global optimal point, the
oscillation leads to opposite gradients and they cancel out due to the moving average.

AdaGrad. (Duchi et al., 2011) proposes AdagGrad based on SGD to addresses the challenges of
choosing an appropriate learning rate for different parameters. It adapts the learning rate individ-
ually for each parameter by scaling it based on the historical gradient information. The intuition
behind AdaGrad is to give smaller updates to frequently occurring parameters and larger updates to
infrequently occurring parameters. In the context of algorithm 1, AdaGrad modifies the update rule
by introducing a diagonal matrix which accumulates the sum of squares of the gradients:

ϕt (g1, . . . , gt) = gt and ψt (g1, . . . , gt) =
diag

(∑t
i=1 g

2
i

)
t

, (2)

and αt = α/
√
t. Note that in contrast to the same αt = α/

√
t in momentum SGD, this update rule

of αt aims to imply a modest learning rate decay of α/
√∑t

i=1 g
2
ij) for each dimension j. In other
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words, the effective learning rate αt/
√
Vt = α/

√
(
∑t

i=1 g
2
i ). This design helps AdaGrad perform

very well especially in the case of sparse gradient, i.e., where only a small subset of its elements
are non-zero, while the rest are zero or close to zero. However, one limitation of AdaGrad is that
Vt keeps increasing during training, which can eventually lead to very small learning rates and slow
down the learning process.

RMSProp. Root Mean Square Propagation (RMSProp) is another adaptive optimization algorithm
proposed by (Hinton et al., 2012) that addresses some of the limitations of AdaGrad. To prevent Vt

from growing too fast and vanishing the learning rate, RMSProp updates it with the moving average
of the previous Vt. With a hyperparameter similar to momentum SGD, the update rule of RMSProp
is the following:

ϕt (g1, . . . , gt) = gt and ψt (g1, . . . , gt) = βVt−1 + (1− β) diag

(
t∑

i=1

g2
i

)
. (3)

By this design of ψt, RMSProp addresses the issue of continually increasing sum of squares in
AdaGrad by using a decaying average of the squared gradients. This allows the algorithm to give
more importance to recent gradients and effectively adapt the learning rate. By considering only
a window of past gradients, RMSProp can prevent the learning rate from becoming too small and
facilitate faster convergence.

Adam. Adaptive Moment Estimation (Adam) is an adaptive optimization algorithm that combines
the concepts of momentum and RMSProp. It is introduced in (Kingma & Ba, 2014) and has gained
popularity for its robust performance in a wide range of deep learning tasks. Adam maintains two
moving average estimations: the first moment estimate (mean) and the second moment estimate
(variance) of the gradients. With two hyperparameters β1, β2, the update rule of Adam is as follows:

ϕt (g1, . . . , gt) = β1mt−1 + (1− β1)gt,

ψt (g1, . . . , gt) = β2Vt−1 + (1− β2) diag

(
t∑

i=1

g2
i

)
.

(4)

We can also expand out the recursion to get a compact form that is better for later convergence
analysis:

ϕt (g1, . . . , gt) = (1− β1)

t∑
i=1

βt−i
1 gi,

ψt (g1, . . . , gt) = (1− β2) diag

(
t∑

i=1

βt−i
2 g2

i

)
.

(5)

(Kingma & Ba, 2014) argues that Adam combines the benefits of momentum SGD and RMSProp.
The momentum term mt helps Adam accelerate convergence and navigate flatter regions of the
loss landscape, similar to momentum SGD. The second moment estimate Vt acts as an adaptive
learning rate, scaling the updates based on the historical gradient variances. The work also mentions
a correction term to m and V that corrects the bias introduced when m and V are initialized as
zero, though this correction term is out of the scope of this generic framework. In general, Adam
shows excellent performance in various deep learning applications, providing fast convergence and
robustness to different types of data and network architectures.

However, it is pointed out in (Reddi et al., 2019) that the convergence proof in (Kingma & Ba,
2014) is problematic, and counterexample can be provided to provably show the non-convergence
of Adam. We will first introduce the algorithm proposed by (Reddi et al., 2019) and discuss about
convergence in section 3.

AMSGrad. AMSGrad is a modification of Adam that addresses a limitation of Adam related to
the biased estimation of the second moment. Proposed by (Reddi et al., 2019), AMSGrad aims to
provide a more stable and reliable estimation of the second moment to prevent the issue of increasing
variance estimates. The update rule of AMSGrad is similar to Adam, with a modification in the
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calculation of the second moment:

ϕt (g1, . . . , gt) = (1− β1)

t∑
i=1

βt−i
1 gi,

ψt (g1, . . . , gt) = max

[
Vt−1, (1− β2) diag

(
t∑

i=1

βt−i
2 g2

i

)]
.

(6)

In AMSGrad, instead of using a simple moving average of the squared gradients, the maximum of
the historical second moments and the current second moment estimate is taken. This modification
prevents the unbounded growth of the variance estimate, which can occur in Adam and potentially
lead to slower convergence or performance degradation. The remaining steps of bias correction and
parameter update in AMSGrad follow the same procedure as in Adam.

By incorporating the max operation, AMSGrad ensures that the second moment estimate is always
non-decreasing, effectively bounding the learning rate and providing more stability during opti-
mization. This modification has shown improved convergence properties and better generalization
performance in some cases where Adam might suffer from poor convergence due to biased esti-
mates. However, it’s worth noting that AMSGrad may be slightly more computationally expensive
than Adam due to the additional max operation. Overall, AMSGrad is a useful variant of Adam that
addresses the issue of increasing variance estimates, making it a valuable optimization algorithm for
deep learning tasks.

3 CONVERGENCE ANALYSIS

Now that we have introduced several popularly-used optimization methods, it is vital to verify the
convergence of these algorithms analytically. Unfortunately, the nature of the problem is highly
dependent on the data distribution and model architecture, and it is impossible to find a specific
task that fairly evaluates different methods. We will mainly rely on the conventional online learning
framework (Zinkevich, 2003) for convergence analysis. The framework largely resembles the setting
of stochastic gradient descent. At each time t = 0, 1, · · · , T , the optimizer is given an arbitrary
convex function ft(x) (possibly not drawn from a uniform distribution) and the parameter at the
previous time step xt−1 as input. The output is an updated parameter xt. The goal is to find a global
optimal point x∗ := argmin

∑T
i=1 ft(x) that minimizes the sum of the cost at each time step. We

evaluate the performance of the optimizer by the regret defined by:

R(T ) =

T∑
i=1

[ft(xt)− ft(x
∗)]. (7)

3.1 REGRET BOUND

In (Kingma & Ba, 2014), the authors argue that Adam has a regret bound of O(
√
T ). In other words,

we have

lim
T→∞

R(T )

T
= lim

T→∞
O
(

1√
T

)
= 0. (8)

The authors give proof of this argument in the appendix of the paper. However, it is recently pointed
out by several other papers(Défossez et al., 2022; Reddi et al., 2019) that this argument is wrong
because counterexamples can be given to disprove the argument.

(Reddi et al., 2019) gives a very trivial example where Adam fails to converge to the optimal point.
Actually, Adam converges to the worst point that contributes to the largest loss. Suppose the feasible
domain for x is F = [−1, 1] and constant C > 2. Let the functions be defined as:

ft(x) =

{
Cx, for t mod 3 = 1

−x, otherwise
. (9)

We can observe that x∗ = −1 because it contributes to the lowest loss in one period (three steps) and
hence the long run. Suppose we choose the hyperparameters in Adam as β1 = 0 and β2 = 1

1+C2 ,
it is shown that Adam (and RMSProp) converges to the worst suboptimal point x = 1 under this
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setting. We omit the proof here and refer readers to the appendix in (Reddi et al., 2019) for more
details. The authors explain that the intuition is that the large gradient C is unable to counteract the
−1 gradients since it is scaled down by a factor of almost C for the given value of β2.

We want to make a few remarks to this example provided in Reddi et al. (2019). First, the example
includes a periodic sequence of functions to optimize. This is very practical especially considering
the case when we want to train a model iteratively using the data for several epochs. Although in
reality, we usually shuffle the data or draw the data from a uniform random distribution, we will
show later in section 4 that it also contributes to the non-convergence of Adam.

Second, we want to point out that equation 4 and equation 5 shows that Adam is the same as
RMSProp when β1 = 0. Although we understand that (Reddi et al., 2019) aims to use this ex-
ample to show the case when the scaling term absorbs the effect of a large but significant gradient,
it is somewhat unfair because the example essentially shows the pitfall of RMSProp, but not Adam.

Third, in correspondence to the second remark, (Reddi et al., 2019) actually also argues that there
always exists a (stochastic) online optimization problem where Adam fails to converge to the optimal
point, as long as we have β1 <

√
β2, which is a more reasonable assumption to make because

(Kingma & Ba, 2014) also uses a similar assumption in their proof. Moreover, the default setting of
Adam (for example, β1 = 0.9, β2 = 0.99 in PyTorch) usually falls into this assumption.

Furthermore, (Reddi et al., 2019) shows that AMSGrad provably has a regret bound of O(
√
T ) and

hence also have the same convergence rate shown in equation 8. We again omit the proof here and
have to admit that we are unsure about the correctness of the proof.

3.2 CHANGE IN LEARNING RATE

(Reddi et al., 2019) also provides another tool to evaluate different adaptive methods qualitatively
and intuitively. The authors defines the change in the inverse of learning rate as

Γt+1 =

(√
Vt+1

αt+1
−

√
Vt
αt

)
. (10)

Intuitively, we want to keep Γt+1 positive, i.e., keep the effective learning rate decreasing along the
training. It is observed that this property hold for momentum SGD, AdaGrad, and AMSGrad, but
is potentially indefinite for RMSProp and Adam. This can also give an intuitive explanation why
RMSProp and Adam may fail under certain circumstances.

4 EXPERIMENTS

In this section, we will mainly show three categories of experiments. One of them follows the
counterexample provided in section 3.1 by (Reddi et al., 2019). The other two will cover some
commonly used datasets and machine learning models. We will run the adaptive methods motioned
above in section 2 and compare how the loss decreases with respect to training iterations. We do
not fine-tune the hyperparameters for these methods because we do not care what is the minimum
loss achieved by these methods. Instead, we are interested in how these methods behave under the
same set of hyperparameters. This also aligns with the ultimate purpose of the design of adaptive
methods.

4.1 SPECIAL CASE

In this experiment, we implement the function as described by equation 9. We set β1 = 0, β2 =
1

1+C2 for Adam and similarly β = 1
1+C2 for RMSProp. The learning constant step size α is set to

0.1. All other hyperparameters are the default in PyTorch. Figure 1 shows the experiment result with
different settings. We can observe that RMSProp and Adam converges to suboptimal point x = 1,
while other adaptive methods are able to move the parameter towards x = −1. This confirms
the claim made in (Reddi et al., 2019) and clearly shows the simple yet effective improvement in
AMSGrad compared to Adam. Comparing figures 1a and 1b, we show that the non-convergence
of RMSProp and Adam does not depend on the choice of C as long as we have C > 2. Figure 1c
shows that this example also applies to the stochastic case where the sequence of functions does not
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(a) C = 2.1
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(b) C = 5
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(c) Stochastic (C = 5)

Figure 1: Experiment on special case. We did experiment on the special case with two different
C values. We also extend the example into a stochastic version where the two cases are chosen
based on a random sampling. All experiments are done with 5 random seeds (5 different random
initialization of x. Note that RMSProp and Adam overlap for all three subfigures due to the settings.
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(a) Training loss on MNIST
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(b) Validation loss on MNIST
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(c) Training loss on CIFAR-10
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(d) Validation loss on CIFAR-10

Figure 2: Experiment for linear regression. We show the training and validation loss of linear
regression on both the MNIST and CIFAR-10 dataset. All experiments are done with 5 random
seeds (5 different random initialization of parameters).

behave necessarily periodically but asymptotically, which is closer to the reality in the practice of
SGD.

4.2 LINEAR REGRESSION

Linear regression is a simple yet widely used algorithm. We implement linear regression by the
linear layer in PyTorch. We fit the model on the MNIST and CIFAR-10 (Krizhevsky et al., 2009)
dataset. We simply flatten the images and treat them as n-dimensional vectors and do linear re-
gression. Figure 2 shows the result of the experiments. We can observe that Adam and AMSGrad
generally has the best performance compared to other adaptive methods and there is no observable
difference between them. One interesting phenomenon to notice is that all methods has small vari-
ance in training loss, but RMSProp has very large variance in validation loss. Adam and AMSGrad
also has a considerable validation loss variance on CIFAR-10. One speculation of the reason is that
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(a) Training loss
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(b) Validation loss

Figure 3: Experiment for CNN. We show the training and validation loss of convolutional network
on the CIFAR-10 dataset. All experiments are done with 5 random seeds (5 different random initial-
ization of parameters).

different optimizers have different “perfered” convergence region. It is possible that some region
has low loss for the training set but have large loss for the validation set.

4.3 CONVOLUTIONAL NETWORKS

The last experiment is to optimize parameters in a convolutional neural network (CNN) on the
CIFAR-10 dataset (Krizhevsky et al., 2009). We can observe from figure 3 that the behavior of these
adaptive methods almost resembles that in figure 2. It is noticeable that RMSProp has even larger
variance on both the training and validation dataset. This might be caused by the complexity of
the model and the distribution of dataset. Another interesting observation from Figure 3b is that all
methods suffer from overfitting more or less. It would be another interesting topic to investigate how
these methods behaves around the optimal point. This is very important because it can verify the
effective ness of the decreasing learning rate.

4.4 SUMMARY

To summarize this section. We want to make a very import remark. In this section, we conduct three
categories of experiments to compare the performance of different adaptive methods in stochastic
gradient descent. One of these categories followed a counterexample provided by (Reddi et al.,
2019), which showed that Adam fails to converge in a special case where the loss function has a
certain structure. However, we found that Adam and other adaptive methods work very well for
generic cases, which are more common in reality. This may be related to the statistical distribution
of data, as the distribution in the special case is not very common. Our experiments demonstrate
the importance of testing optimization algorithms on a variety of datasets and model architectures
to gain insights into their behavior under different conditions.

5 CONCLUSION

In this report, we conduct a comprehensive survey of adaptive stochastic gradient descent algo-
rithms and benchmark them on different datasets and model architectures. Our findings provide
insights into the behavior of different optimization algorithms under different conditions, identify
their limitations, and suggest best practices for their use. We believe the report has a potential to
guide researchers and practitioners in the selection of the most suitable optimization algorithm for
their specific problem. It can also help researchers in developing new and better optimization al-
gorithms by identifying the limitations of existing ones. We hope that our findings will contribute
to the development of more efficient and effective optimization algorithms for machine learning
applications.
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